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does not, in fact, contain any of the omissions noted in the text of [4]). The presence
of a finite number of formal invariants of the second order non-Hamiltonian systems
with resonances was established earlier [5]. The same aspect was studied for the multi-
dimensional systems by the author in [6] and (simultaneously and independently) in [7].
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For differential systems of neutral type we examine one of the formulations of
the finite-time interval stability problem, i.e., technical stability. By the
Liapunov-Krasovskii method [1— 3] we obtain sufficient conditions for techni-
cal stability and for the so-called contracting technical stability. Similar in-
vestigations for ordinary differential equations were carried out in [4] and for
equations with a lagging argument, in [5, 6].

1, We are given a system of differential equations

,% Dz, (0),t) =f (@ (©®)t), D@ O, t)=z(@)—g@®),?) (LD

g@®, 0=\ [dn (6,12 (@)
Here the vector function z;(0) = x (¢ + 6) belongs forall ¢ > O to the spaceC,=
C ([—v, 0], R™) with the norm |z (8) | = sup ( | z; (8) | for —7v <0 <O,

i=1,2,...,n); n(0, t)isan(n X n)-matrix of functions continuous in ¢ &
[0, oo0) and of bounded variation in 0, for which a continuous function I, (s), nonde-
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creasing in s = [0, 1], I, (0) = 0, exists such that

lg[dou(ﬁ Nz®|<h() sup_ [s@]

Vt 10, 0), Vz () =C,
The continuous z-dimensional vector functional f (z (B), ) is chosen in such a way
that the solution of system (1. 1), defined by the initial function =z, (6) = @, (0),
— T < 0 < 0 exists and is unique [7].

Definition 1. System (1.1)is said tobe (&, 4, £,, T)-stable (a0 << A)
the solution z,(6) defined by the initial function || z,, (8)] < @ satisfies the inequal-
ity [ 20) | <A, Vit ltg, to + T).

Definition 2. System (1.1)is said tobe (&, 4, B, t,, T)-contractively sta-
ble (B <l a < A) ifitis (&, A, t,, T)-stable and if for the solution Z; (6) defined
by the initial function |z, (8)] <C « we can find an instant ¢, = (¢, t, + T), ¢, =
t (t07 xta(e))7 such that "xt (e)“< Bv Vie (£, to + T)' '

Definition 3, System (1.1)is said tobe (&, A, f,, T)-unstable (o << A) if
there exists even one trajectory z,* (0) defined by the initial function | z,* (6) | <<
a, for which the relation | z,* (8) | = A holds at some instant ¢, & (t,, to + T).

The basic aim of the paper is to find the relations between the finite allowances for
the input ¢ and the output A, B, the time constraints on t, and 7' and the parameters
of the considered system (1, 1), which would guarantee stability in a finite time inter-
val, It is important to note that some of the constraints imposed upon the parameters of
system (1. 1) in order to ensure asymptotic Liapunov stability are insufficient for tech-
nical stability. On the other hand, the introduced stability (contracting stability) can
hold even when the parameters of the system (1, 1) do not ensure its Liapunov stability,

2. As a preliminary we consider a functional-difference operator D (z (8), t) and
the corresponding functional-difference system

z(t) —g@ ©), ) =h(@), t>t, 4 (0) = ¢(0) (2.1
h (t) & Co* = C ([0, ), R")

whose properties we use in the proof of the engineering stability theorem,

Definition 4. Operator D is said to be exponentially increasing uniformly with
respect to space Co* if constants K; > 0, K,>> 0 and a exist such that for any
functions ¢, (0) & C, and h (t) & Cy* and for an arbitrary instant t, & [0, o0)
the continuous solution Z; (B) of system (2, 1) satisfies the relation

2 O 1< Ki| 9 @ exp {a (¢ — to} + Kall ((—t) 539 Jh@)h £t (2.2

where H (r) is the exponential function ¥ if a>> 0, is the linear function b -+ cr
if @ = 0, and is the constant d if a <<0.

Sufficient conditions for operator D to be exponentially increasing uniformly with
respect to C,* are given by

Lemma 1, If the matrix of the functions p (8, t) is such that for some & (0, 7]

0 —e

§ @ 01z@=§ @020 (2.9)
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then operator I is exponentiaily increasing,
Proof. We have

—t
| 1 ® 012, @|<Lolz, @  ~1<O<—e Lo —const
—

At first we assume that L, < 1. Using the step method, we find an estimate for the con-
tinuous solution z, (0) of system (2. 1), As steps we take the semi-intervals {f, + (k —
1)e, to + ke), k=1, 2,.... We take the constant N, = v /¢ if t/ ¢ is an integer and
No={1/¢&] -+ 1 in the remaining cases ([a] is the integer part of number a). Thiscon-
stant characterizes the duration of the aftereffect. After the N, -th step the aftereffect
of the process’ states preceding the instant ¢, comes to an end, Estimating stepwise, at
the (N, (k — 1) + j)-th semi~interval [t, -+ (No (k — 1) = j — e, 1, + (N (k —
4+ e, j=1,2,..., Ny, k=1,2,... we obtain
No(k—1)4+j—1
oy OIS Lo o, O+ D) LS, (), S, ()= sup |h(w)]

I—0 lestut
It is easy to see that the inequality

Lo¥ < exp «{ ([ tel—voto :| +1 ) in L(]] < exp {len—l\io {t— to)}
is valid on each of the semi-intervals #) + (k — 1)Nge <<t < to + kNge, k=1,2, ...
This relation is not violated as & — oo (the possibility of an unbounded stepwise estima-
tion process follows from condition (2.3)). Therefore,for ¢ > %

InL i
12, OV < Lyt [ oy, (8) | exp {—;‘N—" ¢ — to} + 7=, 51, (8

Now let L, > 1. As above, estimating stepwise, at the &-th semi-interval [z, 4+ (¢ —
1)e, to 4 ke), k =1, 2, ..., we obtain K1
F 2y OV 1 < LoF 194, (0) | + D Lo'Sy, (h)

=0

. t— iy t— 1o 2_4)
k_1a[ € ]< e (

Using the obvious relation

on each of the semi-intervals being examined we obtain

In Lo
e

Lo"<LoexP{ (t——to)}, k=1,2,... (2.5)

Relations (2. 4) and (2. 5) are not violated as k — oco. Therefore, for t > ¢,

In Lo

1
120 @< Lo 19, O+ 7, 5, )| exp {222 (19}, 10>

Iz, O <| @, 0]+ [1 + % (t— to)] Sy, (h), Lo=1

The lemma is proved,

Note 1. If operator D is exponentially increasing uniformly with respect to C*
and if a << 0, then positive constants K,°, i = 1, 2, 3 exist such that the continuous
solution of system (2, 1) satisfies the inequality

2 @O <IK [, (0) | + Ko°Si ()] exp{a ¢ — to)} + K2°S.(h)  (2:6)
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for any s = [ty, o) and t > s,
Together with system (2., 1) we consider the system

D (2 (6), 1) = D (1, (8), to) +p (1) — p (%) (C)
l > t07 Zio (e) = @y (0)

where p (t) = Cy*. .

Definition 5 [3]. We assume that C,** C C,*. Operator D is said to be uni-
formly stable with respect to C,** if positive constants M, and M, exist such that
the solution z, (0) of system (2. 7) satisfies the relation

Iz ©) | < My 9 ()] + M-zt sup Ip@—p@), >t

for any functions @, (0) = C, and p (t) & C,** and for any arbitrary instant
tO = [O’ OO)

It was shown in [3] that if operator D is independent of ¢, then from the condition
of uniform stability it follows that the roots A of the equation

det[E — So (dp (e)]x"] =0

are not greater than 1 — 8, 6> O in absolute value. The converse has not been
proved,

Definition 6, We say that the system of functions g;(t), j=1, 2,..., &k is united
by means of function ¢°(t),with union coefficients 1 < m, <m, <... <<my
(the m; are integers),if g; (1) == gm;” (1), where ¢,,°(t) = ¢°(¢°(. . . (&°(®)) . . . ))
is the m;-fold iteration of operation ¢° (f).

When g¢; = t — 7; (the 7; are constants, 1 < j <C k), the union by means of the
function ¢°(f) =¢ — A, is equivalent to the commensurability of the constants T
with the largest general measure A,.

Lemma 2, Letoperator D have the form
M

D@, 0)=2t)— 2 PiOz@®) 50>t—7

where P; (f) are (n X n)-matrices of continuous functions and the function g, (1)
i=1,2,..., M united by means of a continuous function ¢° () increasing for

t > t, and satisfying the condition ¢t — ¢° (£) > d,> 0, d, = const. If the roots
A (1) of the equation

det [E — %_[, Pi(t)M (t)""i] —0

do not exceed 1 — 8 (6> 0) in absolute value, then operator D is uniformly stable
with respect to C*.

Lemma 2 is the natural generalization of the similar lemma in [3] to the case of a
variable lag.

Lemma 3 [3]. If operator D is uniformly stable with respect to C¢*, then posi-
tive constants a*, K *, K,* and K* exist such that the continuous solution z, (9)
of system (2, 1) satisfies the inequality

2 O] < 1K* |7 @] + Ke*Su (W] exp {—a* ¢ — to)} + Ks*S,, (1)
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for any functions ¢, (8) & C, and h (t) & C,* and for an arbitrary instant ¢, &
[0, oo0).
Here Note 1 on the peculiarities of the constants K;*, i = 1, 2, 3 remains in force,
In anumber of cases Lemmas 2 and 3 permit us to improve the estimate of the solution
of system (2, 1) obtained in Lemma 1,

8, We make use of the Liapunov-Krasovskii method [1—3] to answer the question
of eventual stability of systems of neutral type (1. 1), We examine the functionals
V{z®), t)y=V (z(0); D (x(8), t); t), continuous in their arguments, defined
on the continuous functions z () & C, and translating a bounded set of elements of
space C, into a bounded set of elements of space R, By the upper right-hand derivative
of functional V by virtue of system (1. 1), we imply that

Vo =Tm. [V @ha ©), t+ 80—V (@ ©), 0]
At—ot

where Zt:a: () is the solution of system (1, 1), defined by the initial instant ¢ and the
initial function z,* (0) =z (). The lower right derivative V;' of functional V by
virtue of system (1, 1) is defined similarly,

Theorem 1, Let operator ) be exponentially increasing uniformly with respect
to C,* and norm L (i) of this operator satisfy the relation

1 r
1°. L(t) <(4o — Ky2) a“K—;E'&ly Vi [te, to+T)
Ay = min {4e°T; A}, K,= max {K,; (b + cT) K,; dK,}
If a functional V (z (), t) and an integrable function + (f) exist such that

2. T <), e<|z@OI<A4, [DE@), HI<T, Vit + 1)
ty

F\vma< inf V@), ts)— sup V@®),0) Vil o+ 1)
t ile 2l

ta >ty
Q@) ={®: TL/LO[z@)I<4, [DE@O),)]=T1
Q) ={z(®: [z O)] =2, [D®),)|<aL @)}, ViS(to.to+T)

then system (1. 1) is (., A, ¢,, T)-stable,
Proof. Let z; (0) be a solution of system (1. 1), defined by the initial function
xy, (0) lying in the domain |  (8) | <C «. From condition 1° it follows that

1D (24,(8), to) | << L (to) |2, (®) | < T

I D (2,(8), )] = T (3.1)

for the first time at some instant &, & (¢, &, + T).If T, > AL (t,), then from
(3.1) it follows that | x;, () ] > A at the instant being examined, On the other hand,
by assumption | D (x; (8), ) | << I'yfor t & {2y, ?,]. According to (2.2) this implies
that | z;, (6) | <C A. We have obtained a contradiction, Consequently, | D (z, (6),
&) | <T.

However, if T’y <{ A L (t,), then, making use of condition 1°, from (3. 1) we obtain
{2, 8) | > Ty / L (t,) > «. Therefore, an instant ¢, <<, exists for which

Let us assume that
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|2, ®) | = 4D (2, ), &) [ <L (t) @) and |2 0) | > & for t; <1< .
On the basis of relation (2.2) we conclude that o <[ z, (8) | << 4, Vi [, t,].
Relations 2° and 3 ° are fulfilled in the domain being examined. Therefore,

oi.ﬁ.f) V(x(8), t,)— Sup V(2 0), 1)<V (2,0), t) — V (2,(0), t) <

ly iy

V@< §yeae< V@@, t) — supV (x(), )

4 ty

The relation obtained is a contradiction. Consequently, in this case too | D (x:, (0),
1) “ <<T,. Since the instant £, being examined is arbitrary, we conclude that
| D (z: (), &) | <T'yforall te [ty, t, + T). In accord with relation (2. 2), the
latter leads to the inequality | z; (8) | <A for t & [t,, t, + T). The theorem is
proved,
Theorem 2, If afunctional V (x (8), £), the integrable functions ¥; (%),
i =1, 2, 3 and the constants f§ and y (0 <<f <<B and 0 < y < P) are such that
conditions 1°—3° of Theorem 1 and the conditions:
4°. the norm L (t) of operator D satisfies the inequality
BL®) <2 %% =T,, B,=min{Be-T; B}
V<), Bz O)< 4, D))<,
1o+ T

6°. t)dt << inf V(z(0), to+T)— V(z@®),t
§‘l’z() \o.ifim (x(0), to+T) g?“g) (z (8), %)

Qs (t) ={=z@): B[z ®)| <4, |D(z(8),)| T}
Qu®) ={=®): B[z O <, [D(®), )| <<aL(t)
TV <$s(t), 1<[z@O<B, 0<|DE®), )]<T,

ty
8°. S‘l’s t)dt < 31(‘;) V(z@©), t)) — g:(ltp) V@), t), Vi,t.s(t, to+T)
{y slls Je(l1

>t
Qs () ={z(0): T2/ L) <[z O)| << B, [ D(x(0), )| =Ty}
Qs®) ={z0): Y|z @)<B, 0D (), t)]<BL ()}

are fulfilled for all ¢ & [t,, t, + T),then system (1. 1) is (@, A, B, t,, T)=-contrac
tively stable,

Proof. Let x; (0)be a solution of system (1, 1), defined by the initial function
z;, (1) and located in the domain § < | # (8) | <C . Using Theorem 1, we obtain that
| z: (8) ] << A on the finite time interval [t,, t, + T).

We now assume that the solution being investigated remains in the domain f <
| z (8) | << A. Using conditions 5° and 6°, we obtain

inf V(x(8), to+T)— supV (2(8),2) < (3.2)
Qu(te+T) Qte)

V (xt.+T (e)y ty + T) -V (.‘Et. (0)1 to) <
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tof- T tot- T

Vorwda< § w@d< ini V@), to+T)— sup V(z®), t)

to fo Qsllo+T) Qulto)
From the inconsistency of the inequality it follows that the assumption made is incorrect,
and, consequently, the solution is found to be in the domain |z (6) | <<p at some in-
stant t* = (¢,, ts + T) ,and by condition 4°

| D (- 8), t*)[<L(t*) [z (B) | T

It remains to show that | z, (8) | << B for t & [t*, &, + T).
Let us consider the case when I', = BL (t) (0 < y <<P) for at least one instant
te= It*, ty + T). We assume that

| D (2,(0),ts)| =T (3.3)

for the first time at some instant 7,.It is easy to show that relation (3. 3) is impossible
when T, > BL (t,). However,if 'y <{ BL (t,), then, making use of condition 4°,
from relation (3. 3) we obtain || z,, (0) [ > p. Consequently, instants #, and ¢35 (£, <

t, <tg < 1), exist for which y < | z; 0) | < B for t = lEy, ts5l and B <

| z; 8) | << B for t & lt, t,]. Having fixed the instant 1, & [ty, tgl, 1, <1y,
from relations 7° and 8° we have a contradictory inequality similar to (3. 2). Consequent-
ly, in this-case too | D (zy, (8), 2,) | <<T.

Using the arbitrariness of the instant ¢, being examined, it is easy to obtain from re-
lations (2. 2) and 4° that |z, (0) | << B for t = [t*, t, + T). The proof is similar
for the case BL (t) << T, (y = B). However, if the initial function z,, (0) defining
the solution of the system under investigation lies in the domain | z (0) | <<f, then,
by applying the method of proof presented, we can show that the solution being examined
is to be found in the domain | z (8) | <<B << A forall t & [t,, ¢, -+ T); whence
it follows that | z; (0) | <<B for t = [t*, t, + T). The theorem is proved.

Note 2. Theorems 1 and 2 remain in force for an operator D uniformly stable with
with respect to space C,* if we set

A—Kita B — vKI'B
I*=fmrys = ike

Corollary 1. For an operator D uniformly stable with respect to space C,¥, let
there exist the functions u; (r, ) continuous in their arguments, i = 1, 2, 3 (y; (r,
©), i = 1, 2 arenondecreasing in r for r > 0 and ug (r, ?) is nonpositive
and nonincreasing in r for 7 >> 0) , and the positive constants I';*, T',*, B, N, such
that:

1) I',*,I,*and P satisfy conditions 1° and 4° of Theorems 1 and 2 and condition
4° is a strict inequality
2u, (DO, ) )<V (E0),)<u, (20) |, 9
Vi<us (D (=), )] 2), Vi ity to+T)

3) Sus 0,8)dt <uy (T'y*, t)) —us(ar, ty), Vigt, Elto,to+T); t2>n
4

1y

4) Su3 (0’ t) dt < Uy (Fz*, t?) — Uy (ﬁ? t1)7 th-p t2 = [t(), to + T), o>t

12
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@), DN, |zO|<4; tE[n b+ T)
If, furthermore, for some integer & (1 <C k <C k,), where k,, is an integer solution of the
inequality kv <T <C (ko + 1)v, v = a*Un [(K,*a + K,*I',*)p-1] there exists
a partitioning of the interval [£y, {,+T'] by points ¢;
6) tid +v< <ty + T — (B —jv, i=12,....k—1
such that for the constants
B Ks*_l [B — (Ky*a + K,*T,*) exp {— a* (t; — t;,}]
pj; = max [th—N(tj——tj_l); 0], j= 1, 2, .. .,k
th = tO + T

i

we can select a collection of numbers pg;, j =1, 2, ..., k (g; < pay << Brj)s
for which
7 AN By — ol sup  us (0kiy 1) < Uy (i, Lo + T) —ua (@, to)
j=1 sty
then system (1. 1) is (@, 4, B, tp, T)-contractively stable.

Proof, From relations (3) and (4) and condition 1° of Theorem 1 it follows thatthe
solution z;(0) defined by the initial function B < | 1, (6) | < & satisfies the con-
ditions | D (z; 8), #)| <T,* and |2: (®) ] <A forall t [ty ty + T) .

Let us now assume that | z, (0) | > p ferall t < [t,, t, + T). We partitionthe
interval [t,, £, + 71 by k points whose abscissas satisfy condition (6). Setting s =
t;_, and ¢ = 1;, from relation (2, 6) we have

B<[Ki*a+ Ko* sup | D(za (), u)flexp{—a*(t — b} +
to<ust;
Ko* Ty < (K a-+ Ko T3%) exp {— a* (6 — 5-2)) + KooT)
Ti= sup  [D(@.(0),u)]
fi—1sust
whence T'; > ;. The latter implies the existence of an instant ¢;° < [t;_,, ¢;) at
which [D (@ @), £°)]> s

Using the properties of function u3 (r, ) and the inequality obtained, on each of the &
segments being examined, we have
t

j
S Vi@ dt KN, Uj=[Bj—pril sup  us(puj»t)
ts

i1 IS

for any prj (Tr; << Prj << Brj) . The estimate

lu-|:T k
\ 7y de <N U (3.4
to i=1

is valid on the interval [t,, ¢, + T].

Let us assume that the interval partitioning being examined and the selected collec-
tion of constants pg; satisfy the hypotheses of Corollary 1. Then, comparing relation
(3.4) and conditions (3) and (4), we infer the existence of an instant t* < (t,, ¢, + T)
for which | z;+ (8) | < B. Now, with the aid of conditions (3) and (4) of Corollary 1
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and of condition 4° of Theorem 2 it is not difficult to show that | z; (8) | << B for
t & [t*, ¢y + T'). The proof is obvious when the initial function z, (8) belongs to
the domain z (0) | << B . The corollary is proved.

4. Let us now derive the conditions for the (, A4, o, T)-instability of system(1.1).
Theorem 3. If a functional V (z (8), ?), a bounded function { (¢) and an in-
tegrable function 1 (t) exist such that the conditions

.V >h@), 20 S0, VIl to+ Ty

iy
2. \p@)dt > L) — ), Vi Eltoto+T1)
to

to+Ts
2. p@Odt> sup V@), to+T)—L )
o Qte+T1)
are fulfilled in a nonempty connected set () (f) defined by the relations (7', is some
constant, (0 < T1 <D

)0 =0, (NG, Vi, ty+ Ty
Qi) ={z®): [z@]<A4, [D@E®),)<LOJ=zO)
Q2 (t) = {z(0): V(=(0),t) >L ()}

b) Q) N O): 2O <+
A E (ot +Ty), QNN {z®): 2@ =4}+2

then system (1. 1) is (@, A, t,, T)-unstable,

Proof. Let z; (8) be a solution of system (1. 1), defined by the initial function
2, (8) € Q (t,), | 71, (8) | << . By the theorem's hypothesis, V(z, (6), t5) > T (o).
We assume that V (z,(0),%,) = { (¢,) for the first time at the instant ¢,&(¢o, £o+-T,).
Here it is natural to assume that || z; (8) | << A for all ¢t & [¢t,, t, + T,). Then

E(t) — E(t) >V (24,(8), 1) — V (21,(8), t) >
iy iy
Vv @yde>\v @ ar> ) — o)
t fo
The relation obtained is a contradiction, Therefore, V (z; (8), t)> { (¢) forallt &
[y, to + Ty) and, consequently, z; (6) & Q (). Using this fact, from 3° we obtain
the contradictory inequality

sup V (z(0), to+ T1)—L{to) > V(@1or1,(0), Lo+ T1) — V (24, (8), Lo) >

Q(te+Ty)
tT to+ Ty
Vi@de> | $(Ddt> sup V@ (@), to+T) —L (k)
to ty o+T1

Hence, an instant #, &= (,, t, + T,) such that | z;, (0) | = A exists, The theorem

is proved. '
Corollary 2. If a continueus function u, (r;, ry, t), increasing in r, for r, >

0, the continuous functions u; (r, t), i = 2, 3, increasing in r for r> (, the posi~
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tive functions B (¢) and v (¢) and the constant T; (0 << T, <C T) exist such that

Pou (z@EID @), )<V (20), ) <u (D, 6), 1) ; 0)
Vi>us (| D(x(©), 1) t)
. PO <o, v <L@)B @)
FouTrsuy B@,y@, 00 <L@®r, forp() <r<A
. §us {ua™ 1 (B9, Y(9), 8) 81, s} ds > uy (B (2), 7 (£), £) — us (B (o), 7 (bo), £o)
bt Ty

5. > us{us™ [ur B (), 7(5),9), ), s}yds >u, [AL (¢t + Ty),ty 4 Ty) —
—u1 (B (%), 7 (to), to)

forall t e [ty, to + T,) ,thensystem (L. 1)is (a, 4, fo, T)-unstable,

For the proof it is sufficient to consider the function u, (§ (), y (¢), t) as { (¢)
and to construct the required domain Q (f) with the aid of conditions 3° and 4°,

The author thanks S, B, Norkin for remarks during the discussion of the paper's results,
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